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We consider a system with n degrees of freedom, of the following form:

0.1y
2 =AY, B (B0 ) T WX (2,9, ) e iy () By )+ e (
Y, = A’x. FuY @) Y, (2 v ) 4o 9y () + Ry, (O ..
=, ., %), Y= (YL 0 Y,) s =1,..,n)
Here X,,..., Ya1,... are polynomials of an arbitrarily high degree in z and y with

continuous coefficients which are 2n-periodic in ¢, The functions fsg,.:-s Pso,--+ are
continuous and have the same period, Quantity p is a small parameter, We assume that
both internal and external resonance are present in the system,

There exist various well worked out methods of investigating the oscillations of quasi-
linear nonautonomous systems in resonance cases (method of small parameter, method
of averaging, e, a, ). these reduce the problem of constructing the oscillations accurate
to the first degree of the small parameter to obtaining solutions of, so called, fundamen-
tal (generating) amplitude equations, Inthe case of a system with several degrees of free-
dom, these equations represent a system of nonlinear algebraic equations, for which gene-
ral solution does not esist. Thus, one problem leads to another which is no less complex.

In the present paper we use the results of [1, 2] to develop a method of constructing
both periodic and almost-periodic solutions. This allows us to obtain the values of the
fundamental amplitudes from a system of linear algebraic equations, when the order of
the highest form accompanying p is not greater than three, If X, and Yy, contain terms
of the order higher than three, then the equations defining the fundamental amplitudes
will be also nonlinear, but simpler than those appearing in the method of small parame-
ters, method of averaging, etc,
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In contrast to [1], we do not assume the existence of a unique 2m-periodic solution
for the system (0,1) with fi1 = ... = @u =... = 0 tending to the generating solution as
p— 0.

1, Wwe shall construct, for (0, 1), a solution [1] of the form
zl==l. +El'7 yl=yl‘ +nl’ (1'1)

Here z,* and y,* denote those solutions of (0,1) which become the generating ones
when g = 0 and which are usually obtained in the form of series

2‘“ = 3«"0. (‘) + }“’,1' (t) + AAAN y.. = y;o. (l) + py.l. (t) + oo
with periodic coefficients, while §,* and n,* are bounded solutions of the system
Be* = — Any® + R Ea (3%, 0% M, 1) + Wi (B% 0% N, 6) + ...

0 = A5+ pHa (8% n* M, &) + piHy, E*n* Not) + ..
obtained from (0.1) by substitution of z, and ¥, from (1,1).

Appearance of the arbitrary constants Mi, M,,... and N, N,,... in the right sides of
(1. 2) reflects the fact that z,* and y,* do not represent some periodic solution already
obtained and corresponding to completely defined values of these constants, We know
e, g. [2] that the arbitrary constants M1, M,,... entering the generating soluton x,,* (1)
and y,,* (t), whose values depend on the character of the roots +-iA,, as well as the
constants appearing in the solutions zu* (f), yar® (1),... are obtained from the condition
of existence of solutions for the next approximation,

However, systems of nonlinear algebraic equations appear even in the case of a system
with one degree of freedom, defining the arbitrary constants of the generating solution,

If, on the other hand, we take into account the fact that new periodic or almost peri-
odic oscillations [1] will result in many cases when finite initial perturbations are applied
to any periodic solution, then the solution can be obtained by different methods in which
the values of arbitrary constants are derived in a much simpler way.

We shall assume that the problem of existence of the finite oscillations is solved in
terms of the first approximation in p, otherwise the transformations analogous to those
given below can be extended to the terms containing u? etc,, up to p* where a is an
arbitrarily large number,

Making the substitutions Z,* = &* + in,®, [,* = &* — in,* we pass to the complex
variables, obtaining

2,5 =irg,* +uZy (00T MO+ 2, TN D+

(1.2)

1.3)
E.*. = —il.g.' + p'—z‘sl. (g.» Z.- M, 1) + p‘zs?.. (c.' c_" N' t) +.
Further we transform the system (1, 3) setting
L=t +hu, €% 00, L=, 4 pa, @ E Y (1.4

Wwe shall choose the functions ug and i, with coefficients 25t-periodic in ¢ in such
a way, that in the new system

Lo=ing, Bz, G LM O+ L =—iAL, 2, G5 M9+ (15)
the expressions Z,, defined by
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_ du,, du,, 6"-1 - )
[ o +s2=1( 3T hebe — EN lkﬁcs)]+"‘-“a1+zsx*=z.l (1.6)

are independent of time, The latter can only be attained when definite conditions im-
posed on the coefficents ot Zn* are fulfilled, We shall determine the arbitrary constants
My, M,,... in such a way, that these conditions are satisfied, Then we shall be able to
make a transition from investigation of nonautonomous system to investigation of auto-
nomous system, with first order terms in p included,

Let us represent the functions Za* in the form
m
8

Z,* = 2 ZXR e T M, 20 = 2 2‘, N K a.n
=0 2=0
Here m, denotes the highest order form appearing in Z»*. Forms Z, (P'“"") do not con-
tain {,* nor [,*, and are of order-8 = k — p.
We shall assume that the expressions Zg and um have the form analogous to (1, 7).
Let us substitute the expressions for Z,*, Z, and u, into (1, 6) and compare the coeffi-
cients of like powers of {P—*f,* , This yields

uFE) S (auw-“ 2 i 0= 1 ; )
_——_—— 12 i
B58 8 pbs
o B=1 % T
—ir, (p—2x — D ulfil 2 4 Z, B = VA% gy (1.8)

Here and in the following, a prime denotes the fact that terms with the index s are
not included in the sum,
Let the forms Z:(x?fféa)' z{ k_p)' u{P 2)

of order § be represented as

. a - " ) k = =4
ZyP ) = A (M, ) e (1.9)

.n K.z =g
A “>—2 BSOIM, ot Lm0 L

91 -
usf;‘:;)—z w0 gk ..gnn;;;h... B it oot hnt @t 00 =8,6=01,...,m)

Here and in the following, the asterisk replaces the superscript (ki,..., kn, @1, gn)
and m denotes the highest order form appearing in the polynomials X, Ya.
Inserting (1, 9) into (1, 8) and comparing the coefficients of like powers of g
ces gnngi)-mz‘in, we obtain
— duli e —in w7 4+ ALY = B (1.10)
where

n,= 2 (kg — ) Ag + A, (p— 22 —1)
B=t

are various numbers, When resonance occurs, n, may assume integral or zero values,
If n,is not an integer or zero, the corresponding coefficients B(]) can be chosen
equal to zero, In this case Egs, (1,10) will yield u( *) in the form of 2n- ~periodic
functions,
If n,is an integer, we can choose the coefficients B{;") equal to zero, only when the
equations
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—du{Vydt —in ulD - A (M, 1) =0
have 2x-periodic solutions for u{" . The sufficient condition for this to occur is, that the
Fourier expansions oo
ADM, = 2 AG) () e
N=w—~00
contain no coefficients 4§’} for n = n,.

In the case of resonance, n, are equal to zero not only when kp = gg and p = 2a + 1
(self-resonance), but also may be equal to zero for certain kg = 9g and p 5 2a + 1.
The latter will depend on the relations between -+ iA,.

Let us impose the following condition on the coefficients A" for n, =0 when kg % g,
pF22a+1; 2n

SAS” (M, t)dt=0
0

From this we have 2z
Ag;;{ =0 (p=n), .\Aﬁ’)dt =0 (n,=0,kyskqg pE22+41) (L11)

0
and the latter can be used to determine the constants My, M,,... of the generating solu-
tion,

We should note that the number of Eqs, (1.11) will, in general, exceed the number of
constants M), M,,... However, when some solutions exist in the bounded region, we can
pass from one solution to the next by assigning finite values to &* and 740* . This
implies that those constants Mi, M,,... which satisfy some of Egs, (1.11), will obviously
satisfy all of them,

We shall assume that the values of My, M,,... found, satisfy all Eqs. (1.11) and repre-
sent in addition a simple solution of the equations P; (M) = 0 obtained from the con-
ditions of existence of a periodic solution z;*, yu* for the first approximation,

Let us define the coefficients Bﬁ” (in the case of self-resonance) by the equations

4 2n
B =g A
0
The expressions Zg ({, C_, t) appearing in (1, 5) will now be time-independent,
First equation of (1. 5) can be written as

Lo=ing, 4+t DB GRM . L) 4wt + (1.12)
Returning to the real variables and making the substitution

C, =¢, +in, ‘C. - E, _ i"l,. Bs.,..,.kn.q.,...,qn) — aik,,...,kn) + ib:k,....,kn)
we obtain

£ =—an g, e @ F e €+ 00—
— 1, o (68 e €+ 00 0 )
(1.13)
ny =1, +n[g, Dot gn 4k €, 400" 4
R T N UL LR U FRT TS A

Setting &, = r, cos 0, My = ry sin 8, in (1.13), we have
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yen K 2k
r,=pr, Za:k' n) rfk‘ ey PR 4

(1.14)
Kook 2k
o, =h, +p Dt 2o ) 4o
Steady-state oscillations which include the periodic oscillations for the present system
correct to first order terms in p, are obtained from the solutions of the following alge-

braic equations Keyeannk 2k,
a r, Salfretad e g (1.15)

n

when the highest order form in X4 and Ya is not greater than cubic, we can easily
see that the system (1, 15) reduces to a system of linear algebraic equations, If, on the
other hand, X, and Y, contain forms of order higher than the third, the system (1,15)
is still much simpler than the nonlinear system Py (M) = 0.

Determining the positive solutions ry? of the systemn (1,15), we can obtain new values
for the constants M1, My,... .

Indeed, expressing the variables &, n, by

Be = rgo €O 05, Ty = Ty Sin O
and returning to the variables {,*, ns*, we have
¥ =ryco8 8, +p(.)+ NS =ry sin6, +p () +..
Solutions (1.1) correct to the first order terms in p take the form
By =Ty 7y €080, + () + o, Y =Yt 1800, F () . (1.16)

In the terms not containing i the values 6, are equal to A, 2.

The family of periodic solutions in the generating system includes the sum of terms
M, sin Ay t and M, cos At, therefore we can amalgamate these terms with the corre-
sponding re, sin Ay ¢ and ry, cos At obtaining new values of the arbitrary constants
equal to the sum of M and r,.

In general, the solutions (1,16) can be periodic or almost-periodic, depending on the
character of the roots +iA,.

Arbitrary constants entering the solutions z»*, yn* can be found by considering the
next approximation,

We also note that the stability of the solutions obtained can be inspected very simply

when using the method given in [1],
2, Examples, 1. Our first example will concem a second kind resonance in a

regenerative receiver, The problem has been studied in detail in paper [3],
Equation of oscillations has the form
" +z=p{d — 2?2z 4 Asin 2t 2.1)
Setting ' = — y, we can write (2.1) as
r=—y, y=z+p{l—2Ny—Asin2t 2.2)
The generating solution has the form
zo= Mcost+ Nsint— 1y hsin2t, yo = M sint — N cost+ %y Mcos2t
Equations defining the arbitrary constants M and N obtained from the conditions of
existence of periodic solutions for the first approximation, are
MMiad —1 4 Y, (M2+ N =0, NI[Yigd*—1+Y, (M + N =0 (2.3)
We shall employ the method given previously, to obtain the values of M and N without
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solving (2, 3).
Wwriting (2. 2) in the form of (1, 2), we obtain
B = — % 0% = §* — p [2z0008* + n* (20® — 1) + pel* + 22,80 + £22 40)
Passing further to the complex variables and writing equations of the type (1, 10), we
can determine the values of M and N. Comparing the coefficients of {, we have

—u 1) 2700 4 40D = ¢ (2.4)
where 401 — 1/ (a — ib), a=z$ — 1, b= 25y,
This will have a periodic solution for (.1, if the coefficient A® in the Fourier
expansion To.1) — ) int
P A‘°")—2A$? (M, N)e

n
is equal to zero forn = 2.

Condition 49-D = ¢ will hold, if
Y (N* — M%) =0, NM =0

This yields M= N = 0, which is 2 simple solution of (2, 3).
Performing further the transformations given in Sect,1 we obtain in the place of(1.15),

rU8—A — ) =0, =0, me= VEi—4pi
In the present case solutions (1, 16) have the form
2= —YgAsin2 + rggcost+ p(...) + ooy y =Yg Acos 2t + rysint + p(...) + e
M and N acquire new values given by
M=rie= V4=, N=0
and the generating solution has the form
zo=—1/3hsin2t 4+ Vi —¥sht cost, ye=2/shcos2t -+ V% _—%pAdsint

Stability of the solutions obtained can be examined very simply, using the method
given in [1]. We require the value of the coefficient

p(=d[r(8 —A8 — 9%/, r®)]/dr =18 — A* — ¥/, 1
The necessary condition for the solution rp = 0 to be stable is
p(0) =18 — A2 0, A2 > 18
and for the solution "0 = V& — #4 A3 s
P (ra) = 2 (A2 —18) <0, M < 18

We note, that in this simple example, all possible values of M and & (and not only
the ones obtained above) are easily found from the system(2,3), In addition to i =
= N = 0,any M and N satisfying the equation

MY+ N2 =4 — 3y A2
will be the solutions of (2. 3).

Serious difficulties arise, however, when solution of systems analogous to (2, 3) s
attempted for a system more complicated than (2, 1) even with one degree of freedom,
Difficulties may also be encountered when variational equations are used to examine
the stability of the solutions obtained, For example, in the present case variational equa-
tions yield the condition A3 >> 18 for the stability of the solution M = N = 0, However,
when variational equations are used to investigate the stability of any of the remaining
solutions , no results emerge, since the corresponding characteristic equation has a single



1096 V. G. Veretennikov

root equal to unity, The difficulties increase even more in the case of systems with more
than one degree of freedom,

The next example will illustrate the point,

2. In the second example we shall investigate the oscillations of an electronic gene-
rator [4] acted upon by a complex external force (defined by a set of sine and cosine
harmonics resonating with the natural frequencies of the generator),

Performing the transformations given in [4), we obtain the following system of equa~

HonS: gzt =— yi, 1 = 71+ P (21, Ty Y1, ¥a) + Py sin 2t + p Q, cost
Zy = — 2y3 + W (7, T Y1, ¥3) + Prsint 4 p Qucos2t, yo' =2z, (2.3)

In this system A; = 1, A, == 2 we have both internal and external resonance, Func-
tions ¢ and @ can be written in the form

f (21, Zay Y1y ¥2) = Go¥1 — 61 1121 — BTIY, — Gs¥iYs® — Gy +
+ agmilz; + en1Zyy; t+ a0Tyyt (2.6)
@ (21, Z3, Y1, Ya) = boyr — brzdyn — byZiyrys — bala¥a® — bezy +
+ bszl’zz -+ bez1Toy, + b'l-tzyz,

Coefficients a,,..., a4, b,,..., by were obtained in terms of the parameters of the system
(inductance, capacitance, resistance, etc, ) in [4), and have the form

1 r\ kio,* kaws? 2kikr04 kitk,
o ';';i 'n?' q » al:W’ a2=_m—l.‘r_y ag == T
kiks ro\w?
8= "% ;zi) -72~ ,  Gs==kigy, Gs=kia;, a7=kKas
1 Kkikor \ 02 1 2k 12k,
b=t ) h= e b= G =T
1 r o\ kio;?®
b= (75 + o) T bi=kiby,  by=kib,  by=kibs

W = A'l' Wy = }"21 = "12113’ q= 1 — k1k2
Y

External force acting on the system can be described by the coefficients Pi, ¢1, Py

ard Q, as follows: oA YR
 § P1 =*I;f’71—‘l—(klk2——1), P-z: :‘11 (l ——klkz)
8r kr
Q=—1g35 P Q=737 P

The values of 4; and A, are defined in terms of amplitudes of the harmonics of the
external force, while 7, ki,... — in terms of parameters of the oscillating system,
We $hall seek the periodic solution of the system (2. 5) in the form of Poincaré series

2 = 3o + pru + oy W* = Y10 Py T+ o
Zo* = Ty 1+ P 4+ ehy Yo* = Yoo T WYn + ... (2.7
where 715, Zg9, V10, Vso are solutions of the generating system
Zypt = —Y10, Typ' = —2Yy + Pisint

© = P, sin 2t, C = 2z,
equal to Y10 10 1 P, Y20 20

210 = Y3 Py sin 2t + My sint + Nicost, iz, = 1/3 Pycost -+ M,cos2t— N,sin2¢
Vio = —3/g Pycos 2t — Mycost+ Nisint, yy = %/; Prsint+ M, sin 2t 4 Nycos2t
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Following the method given in [2], we obtain the values of M1, N1 and M,, N, from
the conditions of existence of periodic solutions for the first approximation equations

Iy = — yu, z‘l. == 2”!‘ + f (zl.v Te0s V1o, y'O) + Ql cos 2t
yu' = zu + @ (T1g, Z30, Y10, ¥a0) + Qs cOS ¢, Ypy" = 2zy

These lead to the following nonlinear system of algebraic equations defining My, M

and M,, N,:
27 My [by (M1® 4 Ni3) + 2bg (MY + N¥)) + 9P, (3by — 2b,) Ni* 4

+ 9Py (2by + bg) M1? + 185:P1 (M4 + N,?) + 36 Py (by — bg) NN, +
- 18b,P M1 M, + 6 [—18 b, - biPy? + Pi? (2by + b)) M1 - 6bs PPy My +
+ 2 (—18 byPy + byP1Ps? + 25,P* 4- 54 Q) = 0
—ON; [ (M3 + N1?) + 2y (M2 + NY)] 4 6P1M Ny (by — 2by) —
— 6b,PyN1M, + 12P M Ny (by — by) + 12b.P1 M, Ny +- 2N (1855 —
~b P + Py (by — 6by)] -+ 4P1PyN,y (4by — bg) = 0
—9N, [2a (M* + Ni¥) + a; (My? + Ng)| + 6P1N1 M, (ag — 4ay) +
+ 6P M Ny(2ag — ag) — 12a4P1M 1Ny + 4P1PyNy (3 — 6,) +
+ N, [36a, + Pyt (26, — 3a5) — 8a,P13] = 0
2TM, [2a5 (My? + Ni%) + ar(My? + Ny?)] + 36a Py (M1? + Ni¥) +
+ 18P1N1N, (s — 4ay) + 9P M,y? (a¢ + 2a5) + 9P, Ny* (6ag — a¢) -+
+ 36agP1M 1M, + 24a,P\P.My + 3M, | Pg? (284 + ag) — 36 a4 +
+ 8ayP 8] + 2 (—36ayPy + a1P,® + 8a,P13P, + 54Q1) = 0

(2.8)

We shall seek the solution, following the method given above, Transforming the sys-

tem (2. 5) into the form of (1.2), we obtain
El.. = _nl.! El.. = - 27}1. + [ 8‘1 (%l.' al.v ']l.v ']z.v Mlv M:v Nll NM t) + coe
nl.. = gl. + “Hll (gl.' 7]1‘! Eﬂ‘v 7}1.' Mh Min Nh N.) t) + soey 'h.. = 2&‘ (2.9)
Bu = &1* (205710230 + sTaols0 — 201710410 — B2Y10Y20) -i’-
o3 —

+ Ea* (343107 + ae210¥30 + Gl — 0) + Mm® (3 — an
—ayZ10fs0 — Bg¥se’) T+ Ms* (GeTrgTzo + 287T90¥s0 — GsF10¥10 —

—2agy10H30) + §1*? (35730 — G1l1o) + 03*? (812530 — Galiro) —
—B1°M® (201210 + g¥so) + E1*Th® (aeza0 — Gak10)—
—Mi* 1 (83710 + 265y50) T+ Bi1*Ea* (26,710 1+ GoyYse) +
+E*Th® (aez1o + 207450) — 1B M® — &EMOT® — am**? +

+ asfi*25,* + as G50 + 6y *iEst

Function Hy can be obtained from 8y by replacing the coefficients ay,..., 47 by bg,..s

«e» by, respectively,
Transforming the system (2. 9) further according to Sect, 1, we arrive at equations of
the form (1,10), In the present case all n, are either zero or integers, One of these equa-

tions (for .k = 2 at Lilu) is
LD+ 2P =0, 2P = — i+
+ Vi cost (31 My + bsPy)

Condition of existence of a perfodic solution for u{l-1) yields
Ny =0, Y@M+ byP1)=0

Taking now into account the fact that & = 1/ m®® and b, = ki / m¥®, we obtain

My = — Y4k Py,
For k == 2 at [;{, we obtain
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_ ui(lo.i.o.o)_ 2ius0‘.1.0.0) + A;so.t.o.o) =0

AJp200) |-=s = — 1, bgN, sin 2t + (Vs byPy + Y/, beM, ) cos 2t +
+ (ths 5sPy + Y byM; + Y byPy + Yy beM,) i sin 2¢ +
+ (Y3bsNs + 1y belNy) i cos 2¢
Condition of existence of a perfodic solution for u{310-9 yjelds
N, =0, My= —3%3Py | Iy
since by, = k1 / m?¢® and by = Y, k12 / ny3g®.
The obtained values M1, M; and N, N, satisfy Eqs, (2. 8).

After further transformations we arrive at a system of the form (1.12) which in the
present case has the form

L= ik + nl (10 + onlals + alale) + 13 () + e

& = 218 + nla (@0 + anlils + anbals) + 01 () + - (2.10)
a1y = Yy by, a1 = — Ygb1, 13 = — Y by, a0 = — Yslg, G = Yetty, Gy =5 a1

while the system (1,14) becomes

n' = pn (a + aun® + agrd) + W)+ ey =14 pr ()
ry = pry (80 + 8an® + ) F pd () F ey O =24 3 F . (241)
The equations
ri (a1 + aun® + ayn?) = 0, 1y (850 + 6ur® + agery?) = 0
are reduced to linear algebraic equations by means of the substitution n* = y1 and
r,2 = v, , and their solutions are
(1) n=0,m=0 2 rn=0,n=2Vbo/br, 3) n=0,rn=2Vaa
(@) n= V4 (Q2ads— a1bo) [ (48sbs — ab), 1 = V 4 (2asho — ady) [ (4asby — azby)
when n = ry, = Q0 ,we arrive at the previously obtained values for the arbitrary
constants of the generating solution, and using the second, third and fourth solutions, we
obtain new values for My, M, and N1, N; which are respectively

1) Mi=—YskiP,, Mo=—2fsP5/ks, N1=0, N.=0{

2) Mi=—YhP, Mi=—"Pfk, Ni=2Vbib;, No=0

3) My=—YskiPy, My=—"sPylk1+2 Vada:, N1=0, N:i=0

4 My=—1YgaP1, My= V4 (2asho— acby)/ (4asbs — ashr) —sPs/kr
N1= V4 (2ads— abo)/ (4asbs — arb1), Na=0

The method developed in [1] can again be used to investigate the stability of the new
solutions in a simple manner,

In conclusion we note that the method given in Sect, 1 yields the constants of the
generating solution as functions of the parameters of the system and of the external for-
ces, This becomes particularly important in the process of analyzing oscillatory systems,
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ON THE LIBRATION BOUNDARIES OF A SATELLITE
IN CIRCULAR ORBIT UNDER THE ACTION
OF POTENTIAL PERTURBING FORCES
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S.Ia, STEPANOV
{Moscow)
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The parameters of the final rotation of a satellite with respect to its position of stable
equilibrium are chosen as variables convenient for estimating the potential energy of the
perturbing forces, It is shown that the perturbing forces and deviations of the satellite
satisfy inequalities (3, 4) and (3.6). These inequalities constitute the conditions of

(A, A, t5, T)- stability [1] of the satellite's equilibrium,

1, Let us assume that the center of mass of a satellite moves as a material point along
a Keplerian circular orbit and let us introduce the right-handed rectangular coordinate
systems OnizyTy and Opiyays. We direct the axes of the first of these systems along the
principal central axes ot inertia of the satellite, The second system is the orbital system
(¥1 lies along the velocity, y, along the normal to the orbital plane, y, along the radius
vector),

The potential energy of the gravitational and inertial forces acting on the satellite is
given by the expression [3]

W = aom?® +bayy® + can® + dag?, ag; = cos y;) (1.1)

a =10 (A3 — A1), b = Yy a¥4; — 4,), ¢ = %y 0F (41 — A,), d =3/, @3 (43 — 4y)
in the orbital coordinate system, Here @ is the Keplerian orbital angular velocity and
A4 are the principal central moments of inertia of the satellite, The coefficients g, b,
¢, d are related to each other by the self-evident equations

d=3b=c+ 3a 1.2)
The relative motions of the satellite in the orbital coordinate system have the energy
mtegral H, H=T+ W= R, 9T = AlPl’ + A,p.’ + A‘p.i (1.3)

Here T is the kinetic energy of the relative motions and pg are the projections of the
relative angular velocity of the satellite onto the axes z;.

The table of cosines ayy expressed in terms of the Rodrigues-Hamilton parameters A,
Ay (1 =1, 2, 3) can be written out in the following form:

z Z2 Ty
n A+ M — AP — Ay 2 (—Aohsy + MAy) 2 (Mghy + Mady)
Ys 2 (hohs + Mhy) AP — M2 A2 — A 2 (—Aghr + Aghy)
Vs 2 (—hhg + Mdy) 2 (Ah1 + Ashy) A — M — A0 + At

Ay =cos'yy, A= ysinl,y (=1, 2, 3), n+ v+t =



