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We consider a system with n degrees of freedom, of the following form : 
(kl) 

Y. . = 5,2, + py,, (2, Y. q + py*, (2. Yv t) + -3. + (P*o (r) + cL’pa1 w + *** 

x =_ (21, . . . , ZJ, Y = (Yl. *** . Y,) (Y =I, . . . , 71) 

Here X#r ,..., Y@I ,... are polynomials of an arbitrarily high degree in z and y with 
continuous coefficients which are Zn-periodic in t . The functions j*,,,..., ‘plo,... are 

continuous and have the same period. Quantity p is a small parameter. We assume that 
both internal and external resonance are present in the system. 

There exist various well worked out methods of investigating the oscillations of quasi- 

linear nonautonomous systems in resonance cases (method of small parameter, method 
of averaging, e. a. ). these reduce the problem of constructing the oscillations accurate 
to the first degree of the small parameter to obtaining solutions of, so called, fundamen- 

tal (generating) amplitude equations. In the case of a system with several degrees of free- 
dom, these equations represent a system of nonlinear algebraic equations, for which gene- 
ral solution does not esist. Thus, one problem leads to another which is no less complex. 

In the present paper we use the results of n, ‘21 to develop a method of constructing 

both periodic and almost-periodic solutions. This allows us to obtain the values of the 
fundamental amplitudes from a system of linear algebraic equations, when the order of 
the highest form accompanying p is not greater than three. If X,1 and Y,r contain terms 
of the order higher than three, then the equations defining the fundamental amplitudes 
will be also nonlinear, but simpler than those appearing in the method of small parame- 
ters, method of averaging, etc. 
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In contrast to p], we do not assume the existence of a unique ‘h-periodic solution 
for the system (0.1) with /,I s . . . E 9.1 z . . . s 0 tending to the generating solution as 
p+ 0. 

1. We shall construct, for (0.1). a solution [1] of the form 

z,=s,* +c,*, Y* = Y‘* + ‘1,* (1.1) 

Here z,* and Y,* denote those solutions of (0.1) which become the generating ones 
when p = 0 and which are usually obtained in the form of series 

Z*=X , ‘O* (I) + pz,,’ (t) + .** . Y; = Y,,’ (‘I + PY,,’ (0 + ‘.* 

with periodic coefficients, while &+ and ‘1 ,* are bounded solutions of the system 

&” = - I,Q* + )r $1 (E*, ‘1.1 M, 1) + PE,, (5’9 ‘1.3 N. f) + a.. 
(1.2) 

Q*’ = I,&* + /~Ifa (&*, 9.9 M, 1) + paHas (E’t 9.1 N,‘t) + **. 

obtained from (0.1) by substitution of r, and Y8 from (1.1). 
Appearance of the arbitrary constants ~1, Mu,... and Nl, IV,,... in the right sides of 

(1.2) reflects the fact that %* and y, l do not represent some periodic solutfon already 
obtained and corresponding to completely defined values of these constants. We know 

e.g. p] that the arbitrary constants MI, Ma,... entering the generating solution r,,* (1) 
and y,,,* (:), whose values depend on the character of the roots f&,, as well as the 

constants appearmg in the solutions r,l+ (t), Y,I* (t),... are obtained from the condition 

of existence of solutions for the next approximation. 
However, systems of nonlinear algebraic equations appear even in the case of a system 

with one degree of freedom, defining the arbitrary constants of the generating solution. 

If,on the other hand, we take into account the fact that new periodic or almost peri- 
odic oscillations fl] will result in many cases when finite initial perturbations are applied 
to any periodic solution, then the solution can be obtained by different methods in which 

the values of arbitrary constants are derived in a much simpler way. 
We shall assume that the problem of existence of the finite oscillations is solved in 

terms of the first approximation in p, otherwise the transformations analogous to those 
given below can be extended to the terms containing pa etc., up to pa where a is an 

arbitrarily large number. 
Making the substitutions G* = &* + iqr*, G* = &* - it],* we pass to the complex 

variables, obtaining 

i,** = -in,_* + pTST,,* (5’. 50, IW, 1) + pa&’ (5’. c, N, 0 + . . . 

Further we transform the system (1.3) setting 

5,’ = t;, + PSI C?. C?. 0, f,* = 6; + @‘l (P. r;‘i. 1) (1.4) 

We shall choose the functions IL., and ti5,1 with coefficients 2n-periodic in 1. in such 
a way, that in the new system 

5;=~~,6,+ct~,,(f;.~.M,r)+...,f,‘=-i~,f,+~~~1(6.~,~,~)+... (1.5) 

the expressions Z,l defined by 
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are independent of time. The latter can only be attained when definite conditions im- 
posed on the coefficents 01 Z#l* are fulfilled. We shall determine the arbitrary constants 

Ml, Mz,... ln such a way, that these conditions are satisfied. Then we shall be able to 

make a transition from investigation of nonautonomous system to investigation of auto- 
nomous system, with first order terms in p included. 

let us represent the functions Z,t* in the form 

ms k 9 

qi* = c z:ik’ (P, 5’8 M, Cl, (1.7) 
b=l 

Here m,denotes the highest order form appearing in &I+. Forms Z~~~~$ do not con- 

tain 6,+ nor fS*, and are of order.6 = k -p. 

We shall assume that the expressions Z,t and U~I have the form analogous to (1.7). 
Let us substitute the expressions for Z,l l , Z,t and u,,t into (1.6) and compare the coeffi- 
cients of like powers of C,mc . This yields 

(1.8) 

Here and in the following, a prime denotes the fact that terms with the index s. are 

not included in the sum. 

Let the forms z;$$=). z;Q;? u!G$ 

of order 8 be represented as 

u!~k=$’ = 
*- 2’ up(t)&:’ . . . c>fp . ..r.> (kl+...+k,+ql+...-tqn=a,6=0,1,..., m) 

Here and in the following, the asterisk replaces the superscript (kl,..., k,, a,..., q,J 
and m denotes the highest order form appearing in the polynomials x,1, r’~l. 

Inserting (1.9) into (1.8) and comparing the coefficients of like powers of c:‘... 

. . . c”i;;...s>, we obtain 

_ dui:*)/dt - in&) + AFL*) = B!y) (1.10) 
where 

are various numbers. When resonance occurs, ny may assume integral or zero values. 

If n, is not an integer or zero. the corresponding coefficients Z?(*l/ can be chosen 

equal to zero. In this case Eqs. (1.10) will yield IL’s;) in the form of Zn-periodic 
functions. 

If n, is an integer, we can choose the coefficients B!;‘) equal to zero, only when the 
esuatiom 
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- dui;“/dt - in,uz) + A!y’(hf, 1) = 0 

have Zn-periodic solutions for I&*) , The sufficient condition for this to occur is, that the 
Fourier expansions 

Q(M, I) = i A$:!, (M) einf 
Tl- 

contain no coefficients A!;? for n = nV. 

In the case of resonance, ’ nu are equal to zero not only when kg = qg and P = 2a •i- 1 

(self-resonance), but also may be equal to zero for certain kg # q8 and p # 2a + 1. 

The latter will depend on the relations between f A,. 

Let us impose the following condition on the coefficients AZ) for nv = 0 when ka # q8, 

p#2a+l: 2x 

s A;;‘) (M, t) dt = 0 
0 

From this we have ?X 

A$*!,=0 (n=n,), \ Ai?dt = 0 (n 
; 

,=09k,#qg.p#2a++) (1.11) 

and the latter can be used to determine the constants Ml, M,,... of the generating solu- 
tion. 

We should note that the number of Eqs. (1.11) will, in general, exceed the number of 
constants Af,, M,,... However, when some solutions exist in the bounded region, we can 

pass from one solution to the next by assigning finite values to &o* and tiO* . This 

implies that those constants Ml, M,,... which satisfy some of Eqs. (1.11). will obviously 
satisfy all of them. 

We shall assume that the values of MI, M,,... found, satisfy all Eqs. (1.11) and repre- 
sent in addition a simple solution of the equations P, (M) = 0 obtained from the con- 

ditions of existence of a periodic solution ~#l+, yI1* for the first approximation. 
Let us define the coefficients Br) (in the case of self-resonance) by the equations 

The expressions Z,l (6, % t) appearing in (1.5) will now be time-independent. 
First equation of (1.5) can be written as 

6,:= iA&, + DC, 2 B!? (5;blk’ . . . (&&Jxn + IL* (...I + . . . (1.12) 

Returning to the real variables and making the substitution 

~, = f, + iq8, ~, = E, _ iv,, ~~~~~~~~~~~~~~~~~~~~ = .!kl,‘..,‘,) + ibj”‘...‘~“) 

we obtain 
E,’ = - A,$ + p [s,z O:k’**..Skn) (Cl’ + tll’)kl... (f,L + $Jk” - 

_ ‘1, 2 b~.....k,,) (52 + Vj#‘.:, (4,’ + ss)kn] + p* (...) + . . . 

(1.13) 

?j,’ = A,5, + p [e, 2 b;k’****Skn) (61’ + rF7k*... (&’ + tl,Ykn + 

+ 71r 2 aF**.*VkJ (El% + tlP)kl . . . (h” + Qk^I+ cr’(...) + . . . 

Setting & = r, cos 8,, Q = r, sin 8, in (1.13). we have 
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r; = pr, 2 , ai” 1. -*I kn) <kl .,. $I + p% (.*.) + . . . 
(1.14) 

Steady-state oscillations which include the periodic oscillations for the present system 

correct to first order terms in u, are obtained from the solutions of the following alge- 

braic equations 
(1.15) 

When the highest order form in X.1 and Y,r is not greater than cubic, we can easily 

see that the system (1.15) reduces to a system of linear algebraic equations. If, on the 
other hand, X.1 and Y,s contain forms of order higher than the third, the system (1.15) 

is still much simpler than the nonlinear system Pi (M) = 0. 

Determining the positive solutions r ,,,a of the system (1.15), we can obtain new values 

for the constants MI, MS,... . 

Indeed, expressing the variables b., Q by 

& = r,O cos 8,. G = r,, sin 6, 

and returning to the variables &+, Q*, we have 

f&* = rsO co9 0, + l.4 (...) + . . . , q,* = rso Sin@, + p t--J + ... 

Solutions (1.1) correct to the first order terms in p take the form 

2, = %o* + rao cos 6, + p (4 + .,. , Y, = ymO* + rao sin 0, + p (...) + . . . (i.W 

In the terms not containing p the values 6, are equal to h, t. 
The family of periodic solutions in the generating system includes the sum of terms 

MI sin 5 I and M, cm &t, therefore we can amalgamate these terms with the corre- 

sponding r,,, sin L, i and rrO cos A,: obtaining new values of the arbitrary constants 

equal to the sum of M, and r,,. 

In general, the solutions (1.16) can be periodic or almost-periodic, depending on the 

character of the roots &ii,. 

Arbitrary constants entering the solutions z,i*, y,r* can be found by considering the 

next approximation. 
We also note that the stability of the solutions obtained can be inspected very simply 

when using the method given in ll]. 

2. Examples. 1. 0~ first example will concern a second kind resonance in a 

regenerative receiver. The problem has been studied in detail in paper 133. 

Equation of oscillations has the form 

2” + z = p (i - 9) 2. + 5 sin 2t (2.1) 

Setting x* = - y, we can write (‘2.1) as 

2’ = - U/. r//’ = z + P (i - t’)y - h sin 2t (2.2) 

The generating solution has the form 

zt, = M cos t + N sin 1 - ifg I sin 2t, y,, = M sin t - N cos t + a/, h COS 2t 

Equations defining the arbitrary constants M and N obtained from the conditions of 

existence of periodic solutions for the first approximation, are 

M [‘/is lil - i + ‘/, (Ma + A*)1 = 0, N 1%~ La - 1 + ‘f4 (MS + Na)] = 0 (2.3) 

We shall employ the method given previously, to obtain the values of M and N without 
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solving (2.3). 

Writing (2.2) in the form of (1.2). we obtain 

E” = - tl+r 4.’ = &* - p [22&* + TJ* (%’ - i) + Y,E” + zt,&‘?j* + e*’ q*] 

Passing further to the complex variables and writing equations of the type (1.10). we 
can determine the values of M and N. Comparing the coefficients of z, we have 

_;(0.1) + 240.') + AtO-') = 0 (2.4) 

where ~(0.1) = I/, (0 - fb), a= Gs - i, b - 2%vo. 
This will have a periodic solution for &J), if the coefficient At*‘) in the Fourier 

expansion 
. 

JO. 0 = X&J) pf, N) p 
n 

is equal to zero for n = 2. 

Condition AiOel) = 0 will hold, if 

11, (N’ - M’) = 0, NM = 0 

This yields M= N = 0 , which is a simple solution of (2.3). 

Performing further the transformations given in Sect.1 we obtain in the place of(1.15). 

r(18-k’ - %P) = 0, rlo = 0, n. = vv 

In the present case solutions (1.16) have the form 

z=- V, L sin 2: + rzo cos t + p (...) + . . . . y = V, I cos 2t + rro sin t + p (...) +... 

Al and N acquire new values given by 

M= rze = )r4 - a/,As, N = 0 

and the generating solution has the form 

z#=--/ahsin2t+ f-cost, ye=1/&cos2t+ )/4-SJm1PSint 

Stability of the solutions obtained can be examined very simply, using the method 
given in p]. We require the value of the coefficient 

p (r) = d [r (18 - J.s - sjI rs)] / dr = 18 - Ir? - “lz 9 

The necessary condition for the solution rlo = 0 to be stable is 

p (0) = 18 - A2 < 0, As > 18 

and for the solution ‘20 = v4 - ‘/B ia is 

p (rzO) = 2 (Aa - 18) < 0, A? < 18 

We note, that in this simple example, all possible values of M and N (and not only 
the ones obtained above) are easily found from the system(2.3). In addition to v = 
= N = 0, any M and N satisfying the equation 

lus + Na = 4 - 11, ha 
will be the solutions of (2.3). 

Serious difficulties arise, however, when solution of systems analogous to (2.3) is 

attempted for a system more complicated than (2.1) even with one degree of freedom. 
Difficulties may also be encountered when variational equations are used to examine 
the stability of the solutions obtained. For example. in the present case variational equa- 
tions yield the condition Aa > 18 for the stability of the solution M = N = 0 . However, 
when variational equations are used to investigate the stability of any of the remaining 

solutions , no results emerge, since the corresponding characteristic equation has a single 
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root equal to unity. The difficulties increase even more in the case of systems with more 
than one degree of freedom. 

The next example will illustrate the point. 

2. In the second example we shall investigate the oscillations of an electronic gene- 

rator 143 acted upon by a complex external force (defined by a set of sine and cosine 
harmonics resonating with the natural frequencies of the generator). 

Performing the transformations given in [4], we obtain the following system of equa- 

lions : 21’ =- ~1, ~1 = zl+ pep (21, z,, YI, VJ + P, sin 2t + P Q2 cost 

2% *= - 2~~ + p 1 (21, z2, YI, yp) + PI sin t + p Q1 cos 2t, y2’= 22~ (2.3) 

In this system A1 = i , 4 = 2 we have both internal and external resonance. Func- 

tions f and cp can be written in the form 

f (31, 22, y1, yz) = aoy1 - a1 Sl2Yl - a,zlYlY, - $YlYl” - a,=1 + 

+ a6zl’z2 + n6w2y2 + a7x2y22 (2.6) 

cp (~1, z,, yl, I/,) - boy1 - ~PI’YI - bqzlylye - b,yly2 - *as + 

+ b&z, + bsW,Y, + hey,’ 

Coefficients an,..., *, b, ,..., b, were obtained in terms of the parameters of the system 
(inductance, capacitance, resistance, etc. ) in 143. and have the form 

03 = km, aa = klaz, a7 = klas 

b. = 
klkg 01~ 

(++-;;;h)~j, by==+, bp=s, b,=$$ 

b, = ( 
1 r k& 

n,.J+.,1 Q’ ) 
bj = klbl, be = klb2, b, = klb3 

01 = )cl, w2 = h,, y = n12qs, q = 1 - klk, 

External force acting on the system can be described by the coefficients 

ar:d Q, as follows: 
Pl 

&Al 
=w (klk2 - 11, Pt = q (1 - klk2) 

QI=- & P2, Qs - ;zl PI 

PI, QI. P, 

The values of Al and A, are defined in terms of amplitudes of the harmonics of the 

external force, while r, kl,... - in terms of parameters of the oscillating system. 

We Shall seek the periodic solution of the system (2.5) in the form of PoincarC series 

2x+ = 210 + pa1 + ..‘I y1* = y10 + py11 + e** 

=2 
l = .zpo + px21 + . . . . Y2* = Y20 + lrvzl + *** (2.7) 

where 11~. tno, Ylo, Y,o are solutions of the generating system 

?o’ = -Y10, Z20’ = -2y,, + PI sin t 

equal to 
ylo* = 110 + P, sin 2t, Yao’ = Go 

+lO = 1/S PI sin 2t + MI sin t -I- Nl cos t, x2o = II3 PI cos t + M, cos 2t - Ns sin 2t 

Ill0 = 42 Pa cos 2t - Ml cos t + Nl sin t, yso = V3 PI sin t + Ma sin 2t + NI COB 2t 
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Following the method given in p], we obtain the values of Ml, N1 and M,, IV, from 
the conditions of existence of periodic solutions for the first approximation equations 

t11* = - yu, *’ - - 2Y,l + f (z1.r tro. Ylo, Y,o) + 01 co9 2: 
Yl1’ = a + V (El09 Ilo* Ylot I/,0) + 0, co9 t, Y*,’ = 2.Q 

These lead to the following nonlinear system of algebraic equations defining Ml, Nl 
and M,, N,: 

27 M1 [h (MI’ + N1’) + 2b, (M,’ + N&l + 9P1 (36, - 26,) NI’ + 
+ 9P1 (24 + b,) Ml’ + 184P1 (M,’ + N,‘) + 36 P, (b, - b,) NlN, + 

+ ifJb,P,Mdf, + 6 I-18 b, + blP,’ + PI’ (26, + b,)l MI + 6b, PlP,M, + 
+ 2 (-18 b,Pl + b,PlP,* + 2b7P1’ + 54 0,) = 0 

--9Nl IS (MI’ + N,,) + 2b, (M,’ + %‘)I + 6PrM1N1 (b, - 2U - 
- Gb,P,NlM, + IZP,MlN, (b, - b,) + i2b,PlM,N, + 2N1 [i8b, - 

-blP,” + Pl’ (br - 66,)j + 4PrP,N, (4b, - b.) = 0 (2.8) 
--9N, [2a, (MI, + NI’) + + (M,’ + &‘)I + GPwWf, (a, - 4%) + 

+ 6P,M,N,(2a, - Q) - 12a,PM1N, + 4P1P,N1 (a, - QI) + 
+ N, [360, + P,* (20, - 3a,) - 8a,P1’] = 0 

27M, [2a, (MI’ + NI’) + a,(M,, + N&l + 36mP, (Ml’ + NI’) + 
+ ISPININ, (ae - 4a,) + 9P,M,, (Q + 2%) + gP,NI’ (6% - %) + 

+ 36~PdflM, + 24%PlP,Ml + 3M, IP,’ (20, + 0,) - 36 4, + 
+ &PI’] + 2 (-36a,P, + ~IP,~ + 8a,PlsP, + W1) = 0 

We shall seek the solution, following the method given above. Transforming the sys- 
tem (2.5) into the form of (1.2). we obtain 

&*’ = -_tll*, G” = - 2%’ + p 8,1 (EL’, &*, Q*, Q+, M1, M,, NI, N,, t) + a.+ 

Q*’ = &,’ + @III (&I’, Q*, E,,+, TI,*, M1, M,, Nl, N,, t) + . . . . ~)r” = 2b+ (2.9) 

8,l = &’ (2e,z1,+J + 6G,Ol/,lJ - 2WlOYlO - W/loYro) + 
+ &,’ (“1% + WaoY,, + w,o* - a.1 + ‘11’ ((10 - al+lo’ - 

-quy,, - “,Y,o’) + ‘I,* @,%%o + 2WioY,o - WoYlo - 

-24&1gY,o) + &l” (a,%0 - WlO) + 'I,+* @eo - Wlo) - 

-&l*q1* (2wlo + w,,) + t*'k* w,o - crrd- 

--'la),* (OIllO + 2O,Y,o) + WE,* CwlO + w,o) + 

+&*q,* (Wl, + 2’Wd - ‘Q&l+,“l~* - a,t*‘l1+q,* - a,ql*q,*’ + 

+ h&l*,&,+ + G il*E,+qs* + a77h+'E*' 

Function Hll can be obtained from &I by replacing the coefficients %,..., o, by be,... 

l ..! b7, respectively. 
Transforming the system (2.9) further according to Sect. 1. we arrive at equations of 

the form (1.10). In the present case all nV are either zero or integers. One of these equa- 

tions (for.& = 2 at & is 

- I#;~) + iu\::i) + Z:&l)= 0, <e’)l _1 = - ,/,iblNl sin t + 

+ Vi cus t (3blMlf bspd 
Condition of existence of a periodic solution for u$:) yields 

NI = 0, V, (3blMl + b,Pd = 0 

Taking now into account the fact that h = i / nl*$ and b, = &I / n&,, we obtain 
Ml = - l/, LPI. 

For k =I 2 at 6;& we obtain 
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- Ull 
.@.l.O.O)_ 24 0.1.0.0) + /qo.l.O.‘~) = 0 

~*(o.l.o.o) 
11 in+=- ‘1, 4N, sin 2t i- (l/s b,P, + ‘1, bdi, ) cm 2t + 

f (VI, b,P, -I- ‘I4 b,M, -I- % b,P, -I- ‘1, baM,) 1 sin 2t -I- 

+ (V,b,N, + ‘I, 4N,) f cos 2t 

Condition of existence of a periodic solution for .cpjlJJJJ) yields 

Ns = 0, MI = - V, P, I kl 

since b, = kl / n?g and b, = 11, kla / r&f. 

The obtained values MI, M1 and NI, Ns satisfy Eqs. (2.8). 

After further transformations we arrive at a system of the form (1.12) which in the 
present case has the form 

c< = rG + rb (ma + al&Gil + m*c&, + p' (*..) + . . . 

Q' = M2 + 42 b-20 + 4lEi + %,QQ + p' (...I + .-. (2.10) 

*la = ‘1~ ba, au = - %bl, 01, = - ‘I, b,, a,0 = - V,a,, a,~ = V,a6, u,, =‘I/8 q 

while the system (1.14) becomes 

n’ = prr (alo + or& + al,r,*) + pa (.. .) + . . . . 61’ = 1 + Ps (. ..) + . . . 

5 ’ = pr, (ano + a& + Gr,‘) + p* (...) + ,.., 9, = 2 + pa (...) + . . . (2.11) 

The equations 
rl (alo + ama + wsa) = 0, rg (%, + a21rla + OnrA = @ 

are reduced to linear algebraic equations by means of the substitution r? = yl and 

rza = ?a , and their solutions are 

(i) rs = 0, r2 = 0 (2) r2=O,rl =2 V&XI, (3) ri=O, r2 =2 )/a- 

(4) rr = )/4 (2crt4 - oh) / (h4 - ah), r2 = ,T’ @z&o - aah) / (4&a - &I) 

When n = r, = 0 , we arrive at the previously obtained values for the arbitrary 
constants of the generating solution, and using the second, third and fourth solutions, we 

obtain new values for Mr. M, and Nl, N, which are respectively 

1) MI = - =/aklPl, M2 = - ‘/aP2/h, NI =:O, Nz=Oi 

2) ,U1 = - ‘/&PI, MS = - 2/&jkl, Nr = 2 )/balbl, N2 = 0 

3) MI = - l/&~P~, Ms=-‘/&k~+2 =T, Nl=O, Na=O 

4) MI = - ‘/&PI, M2 = Jf4 (2asbo - qbl) / (4eba - qbl) - 2lshlh 

Nl = v4 (2~4 - do) / (h4 - a&d, N2 = 0 

The method developed in n] can again be used to investigate the stability of the new 

solutions in a simple manner. 
In conclusion we note that the method given in Sect. 1 yields the constants of the 

generating solution as functions of the parameters of the system and of the external for- 
ces. This becomes particularly important in the process of analyzing oscillatory systems. 
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The parameters of the final rotation of a satellite with respect to its position of stable 

equilibrium are chosen as variables convenient for estimating the potential energy of the 
perturbing forces. It is shown that the perturbing forces and deviations of the satellite 

satisfy inequalities (3.4) and (3.6). These inequalities constitute the conditions of 

(A, A, to, T)- stability fl] of the satellite’s equilibrium. 

1. Let us assume that the center of mass of a satellite moves as a material point along 
a Keplerian circular orbit and let us introduce the right-handed rectangular coordinate 

systems OZQ,Z, and Ow~ys. We direct the axes of the first of these systems along the 
principal central axes 01 inertia of the satellite. The second system is the orbital system 
(~1 lies along the velocity, us along the normal to the orbital plane, y, along the radius 

vector). 

The potential energy of the gravitational and inertial forces acting on the satellite is 

given by the expression [33 

w = iaa,? i-&s’ + Gas? + dcm’, ail = coa WJ (i -1) 

u = 1/sd (A, - AI), b = ‘/, 3(A, - A,), c = “/, co’ (Aa - A,), d = a/, CD* (A, - A,) 

in the orbital coordinate system. Here 0 is the Keplerian orbital angular velocity and 
Ai are the principal central moments of inertia of the satellite. The coefficients a, b, 

c, d are related to each other by the self-evident equations 

d=3b=c+3a (1.2) 

The relative motions of the satellite in the orbital coordinate system have the energy 
integral H, 

H = T + W = h, 2T = A& + A,p,= + A#*’ (1.3) 

Here T is the kinetic energy of the relative motions and pa are the projections of the 

relative angular velocity of the satellite onto the axes z~. 
The table of cosines qJ expressed in terms of the Rodrigues-Hamilton parameters &,, 

& (1 = 1, 2, 3) can be written out in the following form : 

Ag ,";,a - Ig - A,2 2 &, + q,, 

a 

It1 2 &A + kM 

YS 2 (1LoJ.a + &) ha - kg + A,2 - h,a 2(-wl+wa) 

V8 2 (-& + %J 2 (A&l+ J.&s) &a-w - Jg+ Is' 

IQ = cos 111 x, J+ = y{ sin Ifa x (f = 1, 2, 3), pa + rps + Y*’ = 1 


